1,353 research outputs found

    Modelling and Developing an Intelligent Road Lighting System Using Power-Line Communication

    Get PDF
    The development of a suitable system which will control street lighting ballasts depending on traffic flow, communicate data between each street light along the Power-Line and sense passing traffic. This paper offers the methodology of the system, environmental benefits, commercial benefits and safety benefits of such a unique system. It also shows topics that have been researched to date and potential future development paths this research could take

    Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem

    Get PDF
    Typical artificial immune system (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which evolutionary algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that these two operators have similar behaviour also in more realistic problems. In this paper we perform an analysis for the standard NP-hard Partition problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and random local search (RLS) may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio (1+) within n(−(2/)−1)(1 − )−2e322/ + 2n322/ + 2n3 function evaluations in expectation. This expectation is polynomial in the problem size and exponential only in 1/

    When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms

    Get PDF
    We present a time complexity analysis of the Opt-IA artificial immune system (AIS). We first highlight the power and limitations of its distinguishing operators (i.e., hypermutations with mutation potential and ageing) by analysing them in isolation. Recent work has shown that ageing combined with local mutations can help escape local optima on a dynamic optimisation benchmark function. We generalise this result by rigorously proving that, compared to evolutionary algorithms (EAs), ageing leads to impressive speed-ups on the standard Image 1 benchmark function both when using local and global mutations. Unless the stop at first constructive mutation (FCM) mechanism is applied, we show that hypermutations require exponential expected runtime to optimise any function with a polynomial number of optima. If instead FCM is used, the expected runtime is at most a linear factor larger than the upper bound achieved for any random local search algorithm using the artificial fitness levels method. Nevertheless, we prove that algorithms using hypermutations can be considerably faster than EAs at escaping local optima. An analysis of the complete Opt-IA reveals that it is efficient on the previously considered functions and highlights problems where the use of the full algorithm is crucial. We complete the picture by presenting a class of functions for which Opt-IA fails with overwhelming probability while standard EAs are efficient

    Robust optimization over time by learning problem space characteristics

    Get PDF
    Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multi-population method in which sub-populations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms

    M-atom conductance oscillations of a metallic quantum wire

    Full text link
    The electron transport through a monoatomic metallic wire connected to leads is investigated using the tight-binding Hamiltonian and Green's function technique. Analytical formulas for the transmittance are derived and M-atom oscillations of the conductance versus the length of the wire are found. Maxima of the transmittance function versus the energy, for the wire consisted of N atoms, determine the (N+1) period of the conductance. The periods of conductance oscillations are discussed and the local and average quantum wire charges are presented. The average charge of the wire is linked with the period of the conductance oscillations and it tends to the constant value as the length of the wire increases. For M-atom periodicity there are possible (M-1) average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte

    Adaptive control of sub-populations in evolutionary dynamic optimization

    Get PDF
    Multi-population methods are highly effective in solving dynamic optimization problems. Three factors affect this significantly: the exclusion mechanisms to avoid the convergence to the same peak by multiple sub-populations, the resource allocation mechanism which assigns the computational resources to the sub-populations, and the control mechanisms to adaptively adjust the number of sub-populations by considering the number of optima and available computational resources. In the existing exclusion mechanisms, when the distance (i.e. the distance between their best found positions) between two sub-populations becomes less than a predefined threshold, the inferior one will be removed/reinitialized. However, this leads to incapability of algorithms in covering peaks/optima that are closer than the threshold. Moreover, despite the importance of resource allocation due to the limited available computational resources between environmental changes, it has not been well studied in the literature. Finally, the number of sub-populations should be adapted to the number of optima. However, in most existing adaptive multi-population methods, there is no predefined upper bound for generating sub-populations. Consequently, in problems with large numbers of peaks, they can generate too many subpopulations sharing limited computational resources. In this paper, a multi-population framework is proposed to address the aforementioned issues by using three adaptive approaches: subpopulation generation, double-layer exclusion, and computational resource allocation. The experimental results demonstrate the superiority of the proposed framework over several peer approaches in solving various benchmark problems
    • …
    corecore